4 years ago

Edge-Abundant Porous Fe3O4 Nanoparticles Docking in Nitrogen-Rich Graphene Aerogel as Efficient and Durable Electrocatalyst for Oxygen Reduction

Edge-Abundant Porous Fe3O4 Nanoparticles Docking in Nitrogen-Rich Graphene Aerogel as Efficient and Durable Electrocatalyst for Oxygen Reduction
Zibin Liang, Hassina Tabassum, Chong Qu, Ruqiang Zou, Bin Qiu, Wei Xia, Song Gao
A novel Fe3O4 nanoparticles/nitrogen-doped graphene aerogel (denoted as Fe3O4@NGA) hybrid material with high porosity was prepared by using iron-based metal-organic frameworks (MOFs), [Fe3O(H2N-BDC)3] (H2N-BDC=2-aminoterephtalic acid), denoted as MIL-88B-NH2, as templates and nitrogen-doped graphene aerogel (NGA) as the substrate. The obtained Fe3O4 nanoparticles demonstrate a rich edge area with abundant exposed active sites and defects, indicating great potential for oxygen adsorption and activation. When used as an electrocatalyst in alkaline solution, the Pt-free Fe3O4@NGA exhibited excellent oxygen reduction reaction (ORR) performance and dramatically enhanced durability and tolerance towards methanol compared to commercial Pt/C catalyst, revealing its great viability and potential in practical application. Living on the edge: Porous Fe3O4 with abundant edges located on nitrogen-doped graphene aerogel (Fe3O4@NGA) is prepared through a metal-organic framework (MOF) route. The Fe3O4@NGA material exhibits excellent electrocatalytic activity and durability towards the oxygen reduction reaction.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/celc.201700627

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.