3 years ago

Enhancing battery performance by nano Si addition to Li 4 Ti 5 O 12 as anode material on lithium-ion battery

Achmad Subhan, Anne Zulfia Syahrial, Sarah Alya Firnadya

Abstract

The lithium-ion battery is a battery that is being developed to become a repository of energy, particularly for electric vehicles. Lithium titanate (Li4Ti5O12) anodes are quite promising for this application because of its zero-strain properties so it can withstand the high rate. However, the capacity of LTO (Li4Ti5O12) is still relatively low. Therefore, the LTO needs to be combined with other materials that have high capacity such as Si. Silicon has a very high capacity which is 4200 mAh/g, but it has a high volume of the expansion. Nano-size can also help increase the capacity. Therefore composite of LTO/nano Si is made to create an anode with a high capacity and also stability. Nano Si is added with a variation of 1, 5, and 10%. LTO/nano Si composite is characterized using XRD, SEM-EDX, and TEM-EDX. Then, to determine the battery performance, EIS, CV, and CD tests were conducted. From those tests, it is studied that Si improves the conductivity of the anode, but not significantly. The addition of Si results a greater battery capacity which is 262.54 mAh/g in the LTO-10% Si. Stability of composite LTO/nano Si is good, evidenced by the coulomb efficiency at the high rate of close to 100%.

Publisher URL: https://link.springer.com/article/10.1007/s11581-017-2284-6

DOI: 10.1007/s11581-017-2284-6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.