5 years ago

Graphene-Co/CoO shaddock peel-derived carbon foam hybrid as anode materials for lithium-ion batteries

Li Wang, Yanfei Li, Shouhui Chen, Yuanyuan Fu, Rihui Zhou, Yonghai Song, Yaqin Chen

Abstract

A novel graphene (G)-Co/CoO shaddock peel-derived carbon foam (SPDCF) hybrid was fabricated as anode materials for lithium-ion batteries. The preparation of G-Co/CoO SPDCF was according to the following two steps. Firstly, the dried shaddock peels were immersed into the mixture of Co(NO3)2/graphene oxide for about 12 h. Then, the shaddock peels were taken out and heated at 800 °C for 2 h under N2 atmosphere. The strategy is simple, low-cost, and environmentally friendly because the shaddock peel is abundant and renewable. The obtained G-Co/CoO SPDCF hybrid were carefully characterized by SEM, EDS, XPS, XRD, TGA, BET, TEM, and electrochemical techniques. The results showed that the carbonized shaddock peels had hierarchical porous nanoflakes structures and graphene was uniformly dispersed into the SPDCF. The nanosized Co/CoO was formed on the G-SPDCF. The resulted G-Co/CoO SPDCF hybrid could maintain a high capacity of 600 mA h g−1 at 0.2 A g−1 after 80 cycles, which was much higher than that of commercial graphite (372 mA h g−1). The enhanced performance might be ascribed to the existence of lots of uniform Co/CoO and the hierarchical G-SPDCF alleviating the mechanical stress during the process of lithiation/delithiation.

Publisher URL: https://link.springer.com/article/10.1007/s11581-017-2294-4

DOI: 10.1007/s11581-017-2294-4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.