Oxygen Reduction in Alkaline Media—a Discussion
Abstract
We propose a complete reaction sequence for oxygen reduction in alkaline solutions, in which the first two steps occur in the outer sphere mode. The oxygen-oxygen bond is broken in the third step, which involves adsorption of OH, which is desorbed in the last step. We have investigated the sequence by quantum-chemical methods and determined the energies of activation. Whether the reaction follows a four- or a two-electron mechanism, depends critically on the energy of adsorption of OH. We surmise that our mechanism holds on all electrodes which interact weakly with oxygen, in particular on gold, silver, and graphite. We explain, why Au(100) is a better catalyst than Au(111), why at high overpotentials the reaction on Au(100) reverts to a two-electron mechanism, and why this does not happen on silver.
Publisher URL: https://link.springer.com/article/10.1007/s12678-017-0365-y
DOI: 10.1007/s12678-017-0365-y
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.