3 years ago

Electrochemical Studies of Morpholino-DNA Surface Hybridization.

Tercero, Levicky, Qiao, O'Connor
Surface hybridization, in which nucleic acids from solution bind to complementary "probe" strands immobilized on a solid support, is widely used to analyze composition of nucleic acid mixtures. Most often, detection is accomplished with fluorescent techniques whose sensitivity can be extended down to individual molecules. Applications, however, benefit as much if not more from convenience, accuracy, and affordability of the diagnostic test. By eliminating the need for fluorescent labeling and more complex sample workup, label-free electrochemical assays have significant advantages provided transduction remains sufficiently sensitive for applications. To this end, we have been exploring morpholinos, which are uncharged DNA analogues, as the immobilized probe species in surface hybridization assays based on measurement of interfacial capacitance. Through comparison of experimental trends with those predicted from basic physical models, the origins of diagnostic contrast in capacitive sensing are reviewed for assays based on morpholino as well as on DNA probes.

Publisher URL: http://doi.org/10.1149/1.3571981

DOI: 10.1149/1.3571981

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.