3 years ago

Electrochemical investigation of the Eu3+/2+ redox couple in complexes with variable numbers of glycinamide and acetate pendant arms

Levi A Ekanger, James Ratnakar, kayla Green, Matthew J Allen, Bokola Adebesin, Dean A Sherry, Zoltan Kovacs, Alexander Funk, Marianne Brunett
Abstract: The Eu3+/2+ redox couple provides a convenient design platform for responsive pO2 sensors for magnetic resonance imaging (MRI). Specifically the Eu2+ ion provides T1w contrast enhancement under hypoxic conditions in tissues, whereas, under normoxia, the Eu3+ ion can produce contrast from chemical exchange saturation transfer in MRI. The oxidative stability of the Eu3+/2+ redox couple for a series of tetraaza macrocyclic complexes was investigated in this work using cyclic voltammetry. A series of Eu-containing cyclen-based macrocyclic complexes revealed positive shifts in the Eu3+/2+ redox potentials with each replacement of a carboxylate coordinating arm of the ligand scaffold with glycinamide pendant arms. The data obtained reveal that the complex containing four glycinamide coordinating pendant arms has the highest oxidative stability of the series investigated.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/ejic.201701070

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.