3 years ago

Synthesis and reductive chemistry of bimetallic and trimetallic rare-earth metallocene hydrides with (C5H4SiMe3)1− ligands

Synthesis and reductive chemistry of bimetallic and trimetallic rare-earth metallocene hydrides with (C5H4SiMe3)1− ligands
The reductive chemistry of [Cp'2Ln(μ–H)(THF)x]y [Ln = Y, Dy, Tb; Cp' = (C5H4SiMe3)1−; x = 2, 0 and y = 2, 3] was examined to determine if these hydrides would be viable precursors for 4fn5d1 Ln2+ ions that could form 5d1-5d1 metal–metal bonded complexes. The hydrides were prepared by reaction of the chlorides, [Cp'2Ln(μ–Cl)]2, 1-Ln, with allylmagnesium chloride to form the allyl complexes, [Cp'2Y(η 3–C3H5)(THF)], 2-Ln, which were hydrogenolyzed. The solvent-free reaction of solid 2-Ln with 60 psi of H2 gas in a Fischer-Porter apparatus produced, in the Y case, the trimetallic species, [Cp'2Y(μ–H)]3, 3-Y, and in the Dy and Tb cases, the bimetallic complexes [Cp'2Ln(μ–H)(THF)]2, 4-Ln (Ln = Dy, Tb). The latter complexes could be converted to 3-Dy and 3-Tb by heating under vacuum. Isopiestic data indicate that 3-Y solvates to 4-Y in THF. Reductions of 4-Y, 4-Dy, and 4-Tb with KC8 in the presence of a chelate such as 2.2.2-cryptand or 18-crown-6 all gave reaction products with intense dark colors characteristic of Ln2+ ions. In the yttrium case, with either chelating agent, the dark green product gives a rhombic EPR spectrum (g1 = 2.01, g2 = 1.99, g3 = 1.98, A = 24.1 G) at 77 K. However, the only crystallographically-characterizable products obtainable from these solutions were Ln3+ polyhydride anion complexes of composition, [K(chelate)]{[Cp'2Ln(μ–H)]3(μ–H)}. Reduction of 1-Y with KC8 in the presence of 2.2.2-cryptand also yields an intensely colored product with an axial EPR spectrum (gx = gy = 2.05, Ax = Ay = 35.5 G; gz = 2.07, Az = 34.5) similar to that of (Cp'3Y)1− ion, but crystals were not obtained from this system.

Publisher URL: www.sciencedirect.com/science

DOI: S0022328X17303728

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.