5 years ago

Revisiting the Helical Cooperativity of Synthetic Polypeptides in Solution

Revisiting the Helical Cooperativity of Synthetic Polypeptides in Solution
Yao Lin, Paul van der Schoot, Jianjun Cheng, Ryan Baumgartner, Hailin Fu, Yuan Ren
Using synthetic polypeptides as a model system, the theories of helix–coil transition were developed into one of the most beautiful and fruitful subjects in macromolecular science. The classic models proposed by Schellman and Zimm–Bragg more than 50 years ago, differ in the assumption on whether the configuration of multiple helical sequences separated by random coil sections is allowed in a longer polypeptide chain. Zimm also calculated the critical chain lengths that facilitate such interrupted helices in different solvent conditions. The experimental validation of Zimm’s prediction, however, was not carefully examined at that time. Herein, we synthesize a series of homopolypeptide samples with different lengths, to systematically examine their helix–coil transition and folding cooperativity in solution. We find that for longer chains, polypeptides do exist as interrupted helices with scattered coil sections even in helicogenic solvent conditions, as predicted in the Zimm–Bragg model. The critical chain lengths that facilitate such interrupted helices, however, are substantially smaller than Zimm’s original estimation. The inaccuracy is in part due to an approximation that Zimm made in simplifying the calculation. But more importantly, we find there exist intramolecular interactions between different structural segments in the longer polypeptides, which are not considered in the classic helix–coil theories. As such, even the Zimm–Bragg model in its exact form cannot fully describe the transition behavior and folding cooperativity of longer polypeptides. The results suggest that long “all-helix” chains may be much less prevalent in solution than previously imagined, and a revised theory is required to accurately account for the helix–coil transition of the longer chains with potential “non-local” intramolecular interactions.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.7b00534

DOI: 10.1021/acs.biomac.7b00534

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.