5 years ago

Ligand preferences in ytterbium ions complexation with carboxylate-based metal-organic frameworks

Ligand preferences in ytterbium ions complexation with carboxylate-based metal-organic frameworks
Mostafa M. Amini, Hamid Reza Khavasi, Alireza Hashemzadeh, Seik Weng Ng

Two coordination polymers of ytterbium were synthesized by employing 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB), 4,4′,4-benzene-1,3,5-triyl-tribenzoic acid (H3BTB), and 3,5-pyridinedicarboxylic acid (3,5-PDC) ligands and were characterized by single-crystal X-ray diffraction analysis. Reaction of ytterbium(III) chloride in the presence of H3BTB and 3,5-PDC ligands gives preferred complexation with the 3,5-PDC ligand, producing [Yb2(3,5-PDC)(ClO4)3][NH(Me)3] (1). However, under exactly the same reaction conditions, reaction of ytterbium(III) chloride in the presence of 3,5-PDC and H3TATB resulted in complexation with H3TATB to form [(CH3)2NH2][Yb4(TATB)4(HCO2)(H2O)2]·3H2O (2). The crystal structure results showed a layered structure for 1 and a metal-organic framework structure for 2. This indicates that the complexation preference of the ytterbium ion is H3TATB ≥ 3,5-PDC ≥ H3BTB. Conversely, the uncomplexed ligand in the metal-organic framework (2) is an auxiliary agent during the synthesis, which shows polytopic linker controls crystal properties, to form suitable crystals for single-crystal structure determination. The prepared coordination compounds were used as heterogeneous catalysts in an oxidation amidation reaction with different aldehydes and benzylamine hydrochloride.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/00958972.2017.1375098

DOI: 10.1080/00958972.2017.1375098

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.