4 years ago

A DFT/TDDFT Study on Excited State Process of a Novel Probe 4′-Fluoroflavonol

Abstract

A novel fluorescent probe 4′-fluoroflavonol (4F) was reported by Serdiuk et al. (RSC Adv 6:42532, 2016) in a previous paper. Spectroscopic studies on excited-state proton transfer (ESPT) of 4F was mentioned, while the mechanism of ESPT for 4F isdeficiency. In this present work, based on the time dependent density functional theory (TDDFT), we investigated the excited-state intramolecular proton transfer (ESIPT) mechanism of 4F theoretically. The primary bond lengths, bond angles and the infrared (IR) vibrational spectra involved in the formation of hydrogen bonds vertified the intramolecular hydrogen bond was strengthened, which manifests the tendency of excited state proton transfer. According to the results of calculated potential energy curves along O–H coordinate, an about 13.18 kcal/mol barrier has been found in the S0 state. However, a barrier of 3.29 kcal/mol was found in the S1 state, which demonstrates that the proton transfer process is more likely to occur in the excited state. In other words, the proton transfer was facilitated by photoexcitation. Particularly, the study about ESIPT mechanism of 4F should be helpful for further understanding property of fisetin.

Publisher URL: https://link.springer.com/article/10.1007/s10876-017-1232-y

DOI: 10.1007/s10876-017-1232-y

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.