4 years ago

Palladacycles incorporating a carboxylate-functionalized phosphine ligand: syntheses, characterization and their catalytic applications toward Suzuki couplings in water

Jiali Yuan, Haiying Wang, Xin Zhang, Shuai Guo


A series of acetato-bridged [C^X]-type (C = aryl carbanion, X = N, P) palladacycles (15) of the general formula [Pd(μ-CH3COO)(C^X)]2 were synthesized as metal precursors via slightly modified procedures. However, in the case of complex 5 with Dpbp (Dpbp = 2′-(diphenylphosphino-κP)[1,1′-biphenyl]-2-yl-κC) as the supporting C^P ligand, an unexpected dinuclear complex [Pd(μ-CO2)(Dpbp)]2 (6) was obtained as a by-product and structurally determined by X-ray crystallography. The reactions of complexes 14 with 2-(diphenylphosphino)benzoic acid conveniently afforded four carboxylate-functionalized phosphine complexes [Pd(C^N)(Dpb)] (Dbp = 2-(diphenylphosphino-κP)benzoato-κO, 710), two of which (9/10) are newly synthesized in the present work and have been fully characterized. A comparative catalytic study revealed that complex [Pd(Ppy)(Dpb)] (7) (Ppy = 2-(2-pyridinyl-κN)phenyl-κC) is the best performer in Suzuki cross-couplings in H2O. In addition, complex 7 exhibits much better catalytic activity compared to the non-functionalized phosphine equivalent [Pd(OAc)(PPh3)(Ppy)] (11), which clearly indicates the superiority of incorporating a carboxylate-functionalized phosphine ligand into the palladacycles. A preliminary mechanistic study uncovered a different precatalyst initiation pathway compared to other known analogues of catalyst precursors.

Publisher URL: https://link.springer.com/article/10.1007/s11243-017-0181-5

DOI: 10.1007/s11243-017-0181-5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.