3 years ago

Metal Complexes of a Novel Schiff Base Based on Penicillin: Characterization, Molecular Modeling, and Antibacterial Activity Study.

Mishra, Chaudhary
A novel Schiff base ligand of type HL was prepared by the condensation of amoxicillin trihydrate and nicotinaldehyde. The metal complexes of Co(+2), Ni(+2), Cu(+2), and Zn(+2) were characterized and investigated by physical and spectral techniques, namely, elemental analysis, melting point, conductivity, (1)H NMR, IR, UV-Vis spectra, ESR, SEM, and mass spectrometry measurements. They were further analyzed by thermal technique (TGA/DTA) to gain better insight about the thermal stability and kinetic properties of the complexes. Thermal data revealed high thermal stability and nonspontaneous nature of the decomposition steps. The Coats-Redfern method was applied to extract thermodynamic parameters to explain the kinetic behavior. The molar conductance values were relatively low, showing their nonelectrolytic nature. The powder XRD pattern revealed amorphous nature except copper complex (1c) that crystallized in the triclinic crystal system. The EPR study strongly recommends the tetrahedral geometry of 1c. The structure optimization by MM force field calculation through ArgusLab 4.0.1 software program supports the concerned geometry of the complexes. The in vitro antibacterial activity of all the compounds, at their two different concentrations, was screened against four bacterial pathogens, namely, E. coli, P. vulgaris, K. pneumoniae, and S. aureus, and showed better activity compared to parent drug and control drug.

Publisher URL: http://doi.org/10.1155/2017/6927675

DOI: 10.1155/2017/6927675

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.