3 years ago

The Effect of Hydrofluoric Acid Surface Treatment on the Cyclic Fatigue Resistance of K3 NiTi Instruments.

Kum, Chang
The aim of this study was to investigate the effect of 50% hydrofluoric acid (HF) surface treatment on the cyclic fatigue resistance (CFR) of K3 NiTi instruments. Twenty as-received and twenty HF-treated K3 NiTi instruments were compared in CFR. The surface texture and fracture surface of two instrument groups were examined with a scanning electron microscope (SEM). Additionally, any change of Ni and Ti composition from both instrument groups was investigated using energy dispersive spectrometry. The results were analyzed with t-test. The HF-treated K3 group showed statistically higher cyclic fatigue resistance than as-received K3 group (P < 0.05). HF-treated K3 instruments showed smoother and rounded surface compared to as-received K3 under SEM observation. The fracture surfaces of both groups showed typical patterns of cyclic fatigue fracture. There was no difference in surface Ni and Ti composition between two groups. HF treatment of K3 instruments smoothed the file surface and increased the cyclic fatigue resistance, while it had no effect on surface ion composition and the file fracture pattern.

Publisher URL: http://doi.org/10.1155/2017/3189729

DOI: 10.1155/2017/3189729

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.