5 years ago

Exploiting Carbonyl Groups to Control Intermolecular Rhodium-Catalyzed Alkene and Alkyne Hydroacylation

Exploiting Carbonyl Groups to Control Intermolecular Rhodium-Catalyzed Alkene and Alkyne Hydroacylation
Andrew S. Weller, Thomas J. Coxon, Michael C. Willis, Alasdair I. McKay, Louisa E. Britton, James Barwick-Silk, Maitane Fernández
Readily available β-carbonyl-substituted aldehydes are shown to be exceptional substrates for Rh-catalyzed intermolecular alkene and alkyne hydroacylation reactions. By using cationic rhodium catalysts incorporating bisphosphine ligands, efficient and selective reactions are achieved for β-amido, β-ester, and β-keto aldehyde substrates, providing a range of synthetically useful 1,3-dicarbonyl products in excellent yields. A correspondingly broad selection of alkenes and alkynes can be employed. For alkyne substrates, the use of a catalyst incorporating the Ampaphos ligand triggers a regioselectivity switch, allowing both linear and branched isomers to be prepared with high selectivity in an efficient manner. Structural data, confirming aldehyde chelation, and a proposed mechanism are provided.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b05713

DOI: 10.1021/jacs.7b05713

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.