3 years ago

First-principles study of copper nanoclusters for enhanced electrochemical CO2 reduction to CH4

First-principles study of copper nanoclusters for enhanced electrochemical CO2 reduction to CH4
The conversion of carbon dioxide (CO2) into usable hydrocarbon fuels is important for recycling carbon resources and mitigating environmental problems. However, converting CO2, which is a stable compound, requires a high additional energy. Therefore, it is essential to understand the electrochemical reduction mechanisms of CO2 and develop more efficient catalysts. In this study, density functional theory calculations were performed to examine electrochemical CO2 reduction on copper nanoclusters (NCs) (Cu13 NCs and Cu55 NCs) and the Cu(111) surface to verify the effect of the surface geometry and size of the NCs on the conversion of CO2 into CH4. The highest energy barriers to CO2 reduction (i.e., the potential-limiting step) on the Cu13 NCs (0.64eV), Cu55 NCs (0.83eV), and Cu(111) surface (0.86eV) lie in the CO CHO step. The formation of an adsorbed CHO intermediate depending on the catalyst surface geometry may significantly influence the energy barrier, as demonstrated by analyses of the electronic properties, such as the density of states, charge density difference, and highest occupied molecular orbital and lowest unoccupied molecular orbital band gap.

Publisher URL: www.sciencedirect.com/science

DOI: S2210271X17304322

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.