4 years ago

In silico identification of inhibitors of ribose 5-phosphate isomerase from Trypanosoma cruzi using ligand and structure based approaches

In silico identification of inhibitors of ribose 5-phosphate isomerase from Trypanosoma cruzi using ligand and structure based approaches
Chagas disease, caused by the protozoan Trypanosoma cruzi, affects approximately seven million people, mainly in Latin America, and causes about 7000 deaths annually. The available treatments are unsatisfactory and search for more effective drugs against this pathogen is critical. In this context, the ribose 5-phosphate isomerase (Rpi) enzyme is a potential drug target mainly due to its function in the pentose phosphate pathway and its essentiality (previously shown in other trypanosomatids). In this study, we propose novel potential inhibitors for the Rpi of T. cruzi (TcRpi) based on a computer-aided approach, including structure-based and ligand-based pharmacophore modeling. Along with a substructural and similarity search, the selected pharmacophore hypotheses were used to screen the purchasable subset of the ZINC Database, yielding 20,183 candidate compounds. These compounds were submitted to molecular docking studies in the TcRpi and Human Rpi (HsRpi) active sites in order to identify potential selective inhibitors for the T. cruzi enzyme. After the molecular docking and ADME-T (absorption, distribution, metabolism, excretion and toxicity)/PAINS (pan-assay interference compounds) screenings, 211 molecules were selected as potential TcRpi inhibitors. Out of these, three compounds – ZINC36975961, ZINC63480117, and ZINC43763931 – were submitted to molecular dynamics simulations and two of them – ZINC36975961 and ZINC43763931- had good performance and made interactions with important active site residues over all the simulation time. These compounds could be considered potential TcRpi inhibitors candidates and also may be used as leads for developing new TcRpi inhibitors.

Publisher URL: www.sciencedirect.com/science

DOI: S109332631730356X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.