3 years ago

Combined in silico approaches for the identification of novel inhibitors of human islet amyloid polypeptide (hIAPP) fibrillation

Combined in silico approaches for the identification of novel inhibitors of human islet amyloid polypeptide (hIAPP) fibrillation
Human islet amyloid polypeptide (hIAPP) is a natively unfolded polypeptide hormone of glucose metabolism, which is co-secreted with insulin by the β-cells of the pancreas. In patients with type 2 diabetes, IAPP forms amyloid fibrils because of diabetes-associated β-cells dysfunction and increasing fibrillation, in turn, lead to failure of secretory function of β-cells. This provides a target for the discovery of small organic molecules against protein aggregation diseases. However, the binding mechanism of these molecules with monomers, oligomers and fibrils to inhibit fibrillation is still an open question. In this work, ligand and structure-based in silico approaches were used to identify novel fibrillation inhibitors and/or fibril binding compounds. The best pharmacophore model was used as a 3D search query for virtual screening of a compound database to identify novel molecules having the potential to be therapeutic agents against protein aggregation diseases. Docking and molecular dynamics simulation studies were used to explore the interaction pattern and mechanism of the identified novel small molecules with predicted hIAPP structure, its aggregation prone conformation and fibril forming segments. We show that catechins with galloyl group and molecules having two to three planar apolar rings bind to hIAPP structures and fibril forming segments with greater affinity. The differences in binding affinities of different compounds against several fibril forming segments of the peptide suggest that a mixture of active compounds may be required for treatment of aggregation diseases.

Publisher URL: www.sciencedirect.com/science

DOI: S1093326317304692

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.