3 years ago

Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces

Novel Method Proposing Chemical Structures with Desirable Profile of Activities Based on Chemical and Protein Spaces
Iwao Maeda, Kiyoshi Hasegawa, Hiromasa Kaneko, Kimito Funatsu
Active molecules among numerous chemical structures in a chemical database can be searched easily by statistical prediction of compound–protein interactions. However, constructing a simple prediction model against one protein does not aid drug design, because detecting chemical structures that act similarly against multiple proteins is necessary for preventing side effects of the potential drug. To tackle this problem, we propose a new method that visualizes chemical and protein spaces. For simultaneous visualization of both spaces, we employ a counterpropagation neural network (CPNN) and develop a new visualization method named multi-input CPNN (MICPNN). In a case study of the kinase protein family, the MICPNN model predicted accurately the complex relationships between compounds and proteins. The proposed method identified chemical structures with promising activity against kinases. Our proposed method is also applicable to other protein families, such as G-protein coupled receptors, ion channels and transporters.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/minf.201700075

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.