3 years ago

Theoretical Study on the Conformational Bioeffect of the Fluorination of Acetylcholine

Theoretical Study on the Conformational Bioeffect of the Fluorination of Acetylcholine
Josué M. Silla, Daniela R. Silva, Matheus P. Freitas
There has been an increasing interest in the study of fluorinated derivatives of gamma-aminobutyric acid (GABA), an acetylcholine (AC) analog. This work reports a theoretical study on the effect of an α-carbonyl fluorination in AC, aiming at understanding the role of a distant fluorine relative to the positively charged nitrogen on the conformational folding of the resulting fluorinated AC. In addition, the chemical and structural changes were evaluated on the basis of ligand-enzyme (acetylcholinesterase) interactions. In an enzyme-free environment, the fluorination yields conformational changes relative to AC due to the appearance of some attractive interactions with fluorine and a weaker steric repulsion between the fluorine substituent and the carboxyl group, rather than to a possible electrostatic interaction F⋅⋅⋅N+. Moreover, the gauche orientation in the N−C−C−O fragment of AC owing to the electrostatic gauche effect is reinforced after fluorination. For instance, the conformational equilibrium in AC is described by a competition between gauche and anti conformers (accounting for the N−C−C−O dihedral angle) in DMSO, while the population for a gauche conformer in the fluorinated AC is almost 100 % in both gas phase and DMSO. However, this arrangement is disrupted in the biological environment even in the fluorinated derivative (whose bioconformation-like geometry shows a ligand-protein interaction of −84.1 kcal mol−1 against −79.5 kcal mol−1 for the most stable enzyme-free conformation), which shows an anti N−C−C−O orientation, because the enzyme induced-fit takes place. Nevertheless, the most likely bioconformation for the fluorinated AC does not match the bioactive AC backbone nor the most stable enzyme-free conformation, thus revealing the role of fluorination on the bioconformational control of AC.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/minf.201700084

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.