4 years ago

Coarse-grained molecular dynamics simulation of interactions between cyclic lipopeptide Bacillomycin D and cell membranes

Ying Zhao, Chunshan Quan, Shengdi Fan, Jiashun Mao, Meiling Zhong, Liang Sun

According to experimental studies, Bacillomycin D has strong antimicrobial activities, but the antimicrobial mechanism is still unknown. In this paper, the interaction mechanisms between this cyclic lipopeptide and three different charged cell membranes are studied via Coarse-Grained Molecular Dynamics (CG MD) simulations. A specific CG model for the cyclic lipopeptide Bacillomycin D was developed. The insertion of cyclic lipopeptide Bacillomycin D into DOPC, DOPC/DPPA and DOPC/DOTAP cell membranes was investigated. The position distribution and stability of Bacillomycin D in the three different cell membranes were analysed and compared based on density profile calculations. Additionally, we focused on the Radial Distribution Function (RDF) curves between amino acid residues with negative charges or strong hydrophobic properties and the head groups of two different cell membranes. Based on changes in the curvature of the three membranes, the cyclic lipopeptide Bacillomycin D can cause localised surface protrusions in DOPC/DOTAP membranes, inward depressions in the surface of DOPC/DPPA membranes and inhibition deformation in the surface of DOPC membranes. This study will help to further understand the antibacterial mechanism of the cyclic lipopeptide Bacillomycin D and provide a basis for the development of new antibiotics.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/08927022.2017.1384632

DOI: 10.1080/08927022.2017.1384632

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.