5 years ago

Energetics of water proton configurations in gas hydrates: comparison of various water models

Mikhail V. Kirov, Sergey V. Gudkovskikh

The total interaction energies for a large number of water proton configurations in the unit cell of hydrate structure I consisting of 46 molecules are compared for qualitatively different water models, such as SPC/E, TIP4P, TIP5P, TIP 3f and AMOEBA. All calculations were carried out using the TINKER molecular modelling package. The Ewald summation method with metallic tin-foil boundary conditions is used to account for long-range electrostatic interactions. It was established that there is a high correlation between the energies calculated using the five water models (interaction potentials). The average correlation coefficient for all pairs of potentials is equal to 0.91. Analogous calculations were carried out to evaluate the consistency of the different water models with respect to a new property of the ice-like system: the hydrogen-bond-reversal asymmetry. It was established that, for all water models, there is relatively high correlation between the energy differences for proton configurations with opposite direction of all hydrogen bonds. In this case, the average correlation coefficient is 0.77. Data for the TIP4P potential differ noticeably from the others, especially owing to the variation in the total interaction energy. The validity and usefulness of simple discrete models of inter-molecular interactions are discussed.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/08927022.2017.1383990

DOI: 10.1080/08927022.2017.1383990

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.