3 years ago

Molecular mechanism of transdermal co-delivery of interferon-alpha protein with gold nanoparticle – a molecular dynamics study

Rakesh Gupta, Nishi Kashyap, Beena Rai

The transdermal route provides numerous advantages over conventional drug delivery routes. However, passive delivery of large molecules such as proteins through the skin is challenging due to its barrier function. Therefore, to design a successful formulation, molecular interaction of these proteins with constituent molecules present in the skin responsible for its barrier function, is necessary. In this study, we have shown through extensive computer simulations that the therapeutic protein, interferon alpha (INF), can be co-delivered through the skin using the gold nanoparticle. We carried out both steered (umbrella sampling) and unrestrained coarse-grained molecular dynamics simulation to show the molecular mechanism of absorption/permeation of protein on/through skin layer in the absence/presence of gold nanoparticle. According to the steered simulations, when INF was taken alone, the free energy minimum was observed at the head group of the skin layer, whereas, when co-delivered with AuNP, it was observed in the interior of the bilayer. Unrestrained simulations have also shown that INF was adsorbed on the skin lipid bilayer head group, while in presence of AuNP, it first complexed with the AuNP and then breached the barrier. The MD simulations thus established the transdermal delivery as a possible pathway for delivery of INF protein.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/08927022.2017.1367094

DOI: 10.1080/08927022.2017.1367094

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.