3 years ago

Viscometric flow for a many-body dissipative particle dynamics (MDPD) fluid with Lees–Edwards boundary condition

Nhan Phan-Thien, Shuo Chen, Jiayi Zhao

Viscometric properties of polymer are explored by the many-body dissipative particle dynamics (MDPD) using Lees–Edwards boundary conditions. The equation of state for the MDPD system is modified by fitting the density correction to different values of the cut-off radius. Due to the many-body interactions in MDPD, the viscosity contributed from the conservative force increases considerably with increasing repulsive coefficient, density and cut-off radius, and cannot be ignored compared to the ‘standard’ DPD case. The influence of these parameters on the MDPD viscosity is investigated, and we propose an equation to predict the viscosity in MDPD model. Additionally, the dumbbell polymer suspension model is investigated in the MDPD fluid, and the relations concerning first normal stress difference and shear rate, the relaxation time and spring constant, are consistent to theoretical works. We conclude that the MDPD model can be used to investigate the dynamics of non-Newtonian droplets.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/08927022.2017.1364379

DOI: 10.1080/08927022.2017.1364379

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.