5 years ago

Heat capacities of supercritical fluids via Grand Canonical ensemble simulations

Jefferson W. Tester, Fernando A. Escobedo, Lauren B. Stutzman

In this work, suitable mathematical relationships to compute isobaric heat capacities from molecular simulations in the Grand Canonical (GC) ensemble are derived and tested via Monte Carlo methods. Using atomistic classical force fields, the residual isobaric heat capacities of pure carbon dioxide (CO2) and pure methanol (MeOH) were obtained at supercritical conditions (with critical properties estimated from a finite-size scaling analysis). The total isobaric heat capacity was determined by combining the residual isobaric heat capacity obtained from molecular simulations with the ideal gas contributions obtained from experimental correlations. Isobaric heat capacities generated from both GC and Isothermal–Isobaric ensemble simulations were compared to predictions from accurate equations of state (EOS)s for CO2 and MeOH at corresponding reduced temperatures and pressures. Isobaric heat capacities calculated from both ensembles were in good agreement with those obtained from the Span and Wagner EOS for CO2 and the IUPAC EOS for MeOH. For comparable computation times, simulations run in the GC ensemble generate results with significantly lower statistical uncertainty than those run in the Isothermal–Isobaric ensemble.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/08927022.2017.1355553

DOI: 10.1080/08927022.2017.1355553

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.