3 years ago

Unphysical nucleation of diamond in the extended cutoff Tersoff potential

Nigel A. Marks, Carla de Tomas, Irene Suarez-Martinez, Alireza Aghajamali

In simulations of carbon materials it is common practice to view the coefficients of the cutoff function as free parameters which can be optimised according to the system of interest. This work examines a common modification to the widely used Tersoff potential in which the coefficient of the upper cutoff is increased to improve the properties of amorphous carbon. Using molecular dynamics simulations, we show that this so-called extended cutoff Tersoff model leads to nucleation of diamond nanocrystals during annealing of amorphous carbon. By varying the density of the system, and examining the radial distribution function in conjunction with the modified cutoff function, we demonstrate that this behaviour is unphysical, and does not represent a new pathway for synthesising diamond. Viewed from a broader perspective, this observation provides a cautionary tale against altering the parameters of empirical potentials without fully considering the wider implications.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/08927022.2017.1355555

DOI: 10.1080/08927022.2017.1355555

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.