3 years ago

Adversarial Neural Networks for Cross-lingual Sequence Tagging.

Heike Adel, David Weiss, Aliaksei Severyn, Anton Bryl

We study cross-lingual sequence tagging with little or no labeled data in the target language. Adversarial training has previously been shown to be effective for training cross-lingual sentence classifiers. However, it is not clear if language-agnostic representations enforced by an adversarial language discriminator will also enable effective transfer for token-level prediction tasks. Therefore, we experiment with different types of adversarial training on two tasks: dependency parsing and sentence compression. We show that adversarial training consistently leads to improved cross-lingual performance on each task compared to a conventionally trained baseline.

Publisher URL: http://arxiv.org/abs/1808.04736

DOI: arXiv:1808.04736v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.