4 years ago

Blending effect between n-decane and toluene in oxidation: a ReaxFF study

Kotni Meena Kumari, Ke-Feng Song, Guang-Fu Ji, Dong-Qing Wei

We studied dependency of toluene oxidation-blended n-decane on blending ratio and temperature using the reactive molecular dynamics (RMD) simulations with the newly developed reactive force field (ReaxFF). Different initial reaction pathways of toluene were observed between pure and blended toluene, while that of n-decane showed little contrast. The differences in toluene oxidation paths are related to radical pool, which is largely influenced by H/C ratio. We analysed the influence of H/C ratio on the consumption of intermediate species, and found different dependencies of HCHO consumption on H/C ratio for different temperatures. The difference is attributed to the large active energy difference between the two main HCHO consumption reactions by OH and O2. For the production part, the OH producing pathway was analysed carefully and shows H/C ratio influences OH production via H production and H abstract reactions. Our RMD simulations show that H/C ratio plays an important role in the oxidation of fuel.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/08927022.2017.1334882

DOI: 10.1080/08927022.2017.1334882

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.