3 years ago

Isoelectronic Theory for Cationic Radii

Isoelectronic Theory for Cationic Radii
Noam Agmon
Ionic radii play a central role in all branches of chemistry, in geochemistry, solid-state physics, and biophysics. While authoritative compilations of experimental radii are available, their theoretical basis is unclear, and no quantitative derivation exists. Here we show how a quantitative calculation of ionic radii for cations with spherically symmetric charge distribution is obtained by charge-weighted averaging of outer and inner radii. The outer radius is the atomic (covalent) radius, and the inner is that of the underlying closed-shell orbital. The first is available from recent experimental compilations, whereas the second is calculated from a “modified Slater theory”, in which the screening (S) and effective principal quantum number (n*) were previously obtained by fitting experimental ionization energies in isoelectronic series. This reproduces the experimental Shannon-Prewitt “effective ionic radii” (for coordination number 6) with mean absolute deviation of 0.025 Å, approximately the accuracy of the experimental data itself. The remarkable agreement suggests that the calculation of other cationic attributes might be based on similar principles.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b07882

DOI: 10.1021/jacs.7b07882

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.