3 years ago

Resonance Enhancement of Nonlinear Optical Scattering in Monolayer-Protected Gold Clusters

Resonance Enhancement of Nonlinear Optical Scattering in Monolayer-Protected Gold Clusters
Stefan Knoppe, Thierry Verbiest
Monolayer-protected metal clusters (MPCs) have recently gained significant research interest, since they are promising candidates for various applications in bioimaging and catalysis. Besides this, MPCs promise to aid in understanding the evolution of the metallic state from bottom-up principles. MPCs can be prepared with atomic precision, and their nonscalable properties (indicating molecule-like behavior) have been studied with a variety of techniques both theoretically and experimentally. Here, we present spectrally resolved second-order nonlinear optical scattering experiments on thiolate-protected gold clusters (Au130(SR)50, Au144(SR)60, and Au500(SR)120). The three clusters share common resonance enhancement around 490 nm, which is ascribed to an interband transition. This indicates emerging metal-like properties, and we tentatively assign the onset of metal-like behavior somewhere between 102 and 130 gold atoms.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b08338

DOI: 10.1021/jacs.7b08338

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.