3 years ago

Stochastic transport of high-energy particles through a turbulent plasma.

R. Petrasso, B. Reville, T. G. White, J. Matthews, C. K. Li, D. H. Froula, D. Ryu, A. Rigby, J. Katz, A. A. Schekochihin, F. Miniati, E. G. Zweibel, A. F. A. Bott, P. Tzeferacos, M. Koenig, R. Bingham, S. Sarkar, D. Q. Lamb, J. S. Ross, L. E. Chen, A. Bell, C. Graziani, H.-S. Park, J. Meinecke, D. Ryutov, G. Gregori

The interplay between charged particles and turbulent magnetic fields is crucial to understanding how cosmic rays propagate through space. A key parameter which controls this interplay is the ratio of the particle gyroradius to the correlation length of the magnetic turbulence. For the vast majority of cosmic rays detected at the Earth, this parameter is small, and the particles are well confined by the Galactic magnetic field. But for cosmic rays more energetic than about 30 EeV, this parameter is large. These highest energy particles are not confined to the Milky Way and are presumed to be extragalactic in origin. Identifying their sources requires understanding how they are deflected by the intergalactic magnetic field, which appears to be weak, turbulent with an unknown correlation length, and possibly spatially intermittent. This is particularly relevant given the recent detection by the Pierre Auger Observatory of a significant dipole anisotropy in the arrival directions of cosmic rays of energy above 8 EeV. Here we report measurements of energetic-particle propagation through a random magnetic field in a laser-produced plasma. We characterize the diffusive transport of these particles and recover experimentally pitch-angle scattering measurements and extrapolate to find their mean free path and the associated diffusion coefficient, which show scaling-relations consistent with theoretical studies. This experiment validates these theoretical tools for analyzing the propagation of ultra-high energy cosmic rays through the intergalactic medium.

Publisher URL: http://arxiv.org/abs/1808.04430

DOI: arXiv:1808.04430v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.