Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol [Applied Biological Sciences]
![Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol [Applied Biological Sciences]](/image/eyJ1cmkiOiJodHRwOi8vc3RhY2thZGVtaWMuaGVyb2t1YXBwLmNvbS9pbWFnZT9pbWFnZV9pZD0zNTk2NSIsImZvcm1hdCI6IndlYnAiLCJxdWFsaXR5IjoxMDAsIm5vQ2FjaGUiOnRydWV9.webp)
Simultaneous saccharification and fermentation (SSF) of solid biomass can reduce the complexity and improve the economics of lignocellulosic ethanol production by consolidating process steps and reducing end-product inhibition of enzymes compared with separate hydrolysis and fermentation (SHF). However, a long-standing limitation of SSF has been too low ethanol yields at the high-solids loading of biomass needed during fermentation to realize sufficiently high ethanol titers favorable for more economical ethanol recovery. Here, we illustrate how competing factors that limit ethanol yields during high-solids fermentations are overcome by integrating newly developed cosolvent-enhanced lignocellulosic fractionation (CELF) pretreatment with SSF. First, fed-batch glucose fermentations by Saccharomyces cerevisiae D5A revealed that this strain, which has been favored for SSF, can produce ethanol at titers of up to 86 g⋅L−1. Then, optimizing SSF of CELF-pretreated corn stover achieved unprecedented ethanol titers of 79.2, 81.3, and 85.6 g⋅L−1 in batch shake flask, corresponding to ethanol yields of 90.5%, 86.1%, and 80.8% at solids loadings of 20.0 wt %, 21.5 wt %, and 23.0 wt %, respectively. Ethanol yields remained at over 90% despite reducing enzyme loading to only 10 mg protein⋅g glucan−1 [∼6.5 filter paper units (FPU)], revealing that the enduring factors limiting further ethanol production were reduced cell viability and glucose uptake by D5A and not loss of enzyme activity or mixing issues, thereby demonstrating an SSF-based process that was limited by a strain’s metabolic capabilities and tolerance to ethanol.
Publisher URL: http://feedproxy.google.com/~r/Pnas-RssFeedOfEarlyEditionArticles/~3/8SF4dNUEIDk/1704652114.short
DOI: 10.1073/pnas.1704652114
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.