3 years ago

Desalination and Nanofiltration through Functionalized Laminar MoS2 Membranes

Desalination and Nanofiltration through Functionalized Laminar MoS2 Membranes
Mark A. Bissett, Robert A. W. Dryfe, Stephen D. Worrall, Eric Prestat, Sarah J. Haigh, Wisit Hirunpinyopas
Laminar membranes of two-dimensional materials are excellent candidates for applications in water filtration due to the formation of nanocapillaries between individual crystals that can exhibit a molecular and ionic sieving effect, while allowing high water flux. This approach has been exemplified previously with graphene oxide, however these membranes suffer from swelling when exposed to liquid water, leading to low salt rejection and reducing their applicability for desalination applications. Here, we demonstrate that by producing thin (∼5 μm) laminar membranes of exfoliated molybdenum disulfide (MoS2) in a straightforward and scalable process, followed by a simple chemical functionalization step, we can efficiently reject ∼99% of the ions commonly found in seawater, while maintaining water fluxes significantly higher (∼5 times) than those reported for graphene oxide membranes. These functionalized MoS2 membranes exhibit excellent long-term stability with no swelling and consequent decrease in ion rejection, when immersed in water for periods exceeding 6 months. Similar stability is observed when exposed to organic solvents, indicating that they are ideal for a variety of technologically important filtration applications.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b05124

DOI: 10.1021/acsnano.7b05124

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.