4 years ago

Isolation and Characterization of Few-Layer Manganese Thiophosphite

Isolation and Characterization of Few-Layer Manganese Thiophosphite
Shuigang Xu, Rolf Lortz, Chang-woo Cho, Xiangbin Cai, Jingwei Wang, Zefei Wu, Jin Hu, Yuan Cai, Gen Long, Ning Wang, Tianyi Han, Jiangxiazi Lin, Junying Shen, Ting Zhang, Zhiqiang Mao
This work reports an experimental study on an antiferromagnetic honeycomb lattice of MnPS3 that couples the valley degree of freedom to a macroscopic antiferromagnetic order. The crystal structure of MnPS3 is identified by high-resolution scanning transmission electron microscopy. Layer-dependent angle-resolved polarized Raman fingerprints of the MnPS3 crystal are obtained, and the Raman peak at 383 cm–1 exhibits 100% polarity. Temperature dependences of anisotropic magnetic susceptibility of the MnPS3 crystal are measured in a superconducting quantum interference device. Anisotropic behaviors of the magnetic moment are explored on the basis of the mean field approximation model. Ambipolar electronic conducting channels in MnPS3 are realized by the liquid gating technique. The conducting channel of MnPS3 offers a platform for exploring the spin/valleytronics and magnetic orders in 2D limitation.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b05856

DOI: 10.1021/acsnano.7b05856

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.