5 years ago

Magnetomigration of Rare-Earth Ions Triggered by Concentration Gradients

Magnetomigration of Rare-Earth Ions Triggered by Concentration Gradients
Jan Fransaer, Isadora R. Rodrigues, Sam Dehaeck, Pierre Colinet, Liubov Lukina, Koen Binnemans
Mach–Zehnder interferometry was applied to explore the effects of inhomogeneous magnetic fields on the mobility of rare-earth ions in aqueous solutions. No migration of ions was observed in a thermodynamically closed system when a homogeneous solution was subjected to a magnetic field gradient alone. However, magnetomigration could be triggered by a concentration gradient of the rare-earth ions in the solution. When a concentration gradient was introduced in the sample by solvent evaporation, consistent migration of paramagnetic Dy3+ ions from the bulk solution to regions with stronger magnetic fields was observed. By contrast, no movement was detected for diamagnetic Y3+ ions in the presence of a concentration gradient.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b02226

DOI: 10.1021/acs.jpclett.7b02226

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.