5 years ago

Selective Hybridization of a Terpyridine-Based Molecule with a Noble Metal

Selective Hybridization of a Terpyridine-Based Molecule with a Noble Metal
W. Ji, K. A. Cochrane, A. Schiffrin, A. Q. Shaw, C.-G. Wang, M. Capsoni, S. A. Burke, T. Roussy
The electronic properties of metal–molecule interfaces can in principle be controlled by molecular design and self-assembly, yielding great potential for future nano- and optoelectronic technologies. However, the coupling between molecular orbitals and the electronic states of the surface can significantly influence molecular states. In particular, molecules designed to create metal–organic self-assembled networks have functional groups that by necessity are designed to interact strongly with metals. Here, we investigate the adsorption interactions of a terpyridine (tpy)-based molecule on a noble metal, Ag(111), by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) together with density functional theory (DFT) calculations. By comparing the local density of states (DOS) information gained from STS for the molecule on the bare Ag(111) surface with that of the molecule decoupled from the underlying metal by a NaCl bilayer, we find that tpy-localized orbitals hybridize strongly with the metal substrate. Meanwhile, those related to the phenyl rings that link the two terminal tpy groups are less influenced by the interaction with the surface. The selective hybridization of the tpy groups provides an example of strong, orbital-specific electronic coupling between a functional group and a noble-metal surface, which may alter the intended balance of interactions and resulting electronic behavior of the molecule–metal interface.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b08576

DOI: 10.1021/acs.jpcc.7b08576

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.