3 years ago

Synthesis of Few-Layer Graphene by Peeling Graphite Flakes via Electron Exchange in Solution Plasma

Synthesis of Few-Layer Graphene by Peeling Graphite Flakes via Electron Exchange in Solution Plasma
Nagahiro Saito, Sangwoo Chae, Maria Antoaneta Bratescu
Compared with conventional graphene, few-layer graphene is an easy-to-use material because of its interesting mechanical and chemical properties. Meanwhile, solution plasma (SP) represents a nonequilibrium discharge, which induces electron exchange similar to a catalyst. Thus, SP serves as an electron donor and acceptor between organic molecules and graphite flakes in a solution. Finally, electron exchange leads to the formation of few-layer graphene by peeling graphite flakes. Furthermore, CN-functionalized few-layer graphene (f-FLG) exhibits excellent stability and dispersibility because of the balance of attractive and repulsive forces, i.e., the van der Waals force between the planes and the electrostatic force of the nitrile functional groups on the edges. In this study, f-FLG was successfully synthesized by peeling graphite flakes via electron exchange induced by SP in an aqueous solution containing an ionic liquid (IL) (1-ethyl-3-methylimidazolium dicyanamide (EMIM-DCA)). X-ray diffraction measurements revealed that the intensity of the 002 diffraction of graphite and the crystallite size along the [001] direction decreased to about 5 nm after SP treatment, indicating the progress of graphite flake peeling. Furthermore, the purified product comprised three layers with a crystallite size along the basal plane of about 80 nm evaluated by the deconvolution of the Raman 2D band. X-ray photoelectron spectroscopy confirmed that the synthesized f-FLG contains 7.7 atom % nitrogen, and the IR spectrum revealed the presence of the CN functional group. To understand the peeling mechanism, the ionization potential (IP) and electron affinity (EA) of the IL in water, and the averaged electron excitation temperature (Te) in plasma were estimated by ab initio molecular orbital calculations, cyclic voltammetry, and optical emission spectroscopy. An energy diagram of IP, EA, and Te shows that SP served to pump electrons for their circulation via EMIM-DCA and to remove electrons from graphite flakes and inject into f-FLG.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b08516

DOI: 10.1021/acs.jpcc.7b08516

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.