5 years ago

Efficient capture, rapid killing and ultrasensitive detection of bacteria by a nano-decorated multi-functional electrode sensor

Efficient capture, rapid killing and ultrasensitive detection of bacteria by a nano-decorated multi-functional electrode sensor
In this work, we demonstrated a nano-decorated porous impedance electrode sensor for efficient capture, rapid killing and ultrasensitive detection of bacteria. The multi-functional sensor was prepared by a facile sonochemical method via in situ deposition of antibacterial prickly Zn-CuO nanoparticles and graphene oxide (GO) nanosheets on a Ni porous electrode. Due to the surface burr-like nanostructures, the nano-decorated impedance sensor exhibited very good bacterial-capture efficiency (70 − 80% in 20min) even at a low concentration of 50 CFU mL−1, rapid antibacterial rate (100% killing in 30min) and high detection sensitivity (as low as 10 CFU mL−1). More importantly, the nano-decorated sensor has proven to be highly effective in quantitative detection of bacteria in a biological sample, for example, a rat blood sample spiked with E. coli. Despite the complexity of blood, the sensor still exhibited excellent detection precision within 30min at bacteria concentrations ranging from 10 − 105 CFU mL−1. The simplicity, rapidity, sensitivity, practicability and multifunctionality of this impedance sensor would greatly facilitate applications in portable medical devices for on-the-spot diagnosis and even the possibility for simultaneous therapy of diseases caused by bacterial infections.

Publisher URL: www.sciencedirect.com/science

DOI: S0956566317306644

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.