3 years ago

Transient flowing-fluid temperature modeling in reservoirs with large drawdowns

A. R. Hasan, N. Chevarunotai, C. S. Kabir, R. Islam

Abstract

Modern downhole temperature measurements indicate that bottomhole fluid temperature can be significantly higher or lower than the original reservoir temperature, especially in reservoirs where high-pressure drawdown is expected during production. This recent finding contradicts the isothermal assumption originally made for routine calculations. In a high-pressure drawdown environment, the Joule–Thomson (J–T) phenomenon plays an important role in fluid temperature alteration in the reservoir. This paper presents a robust analytical model to estimate the flowing-fluid temperature distribution in a reservoir that accounts for the J–T heating or cooling effect. All significant heat transfer mechanisms for fluid flow in the reservoir, including heat transfer due to convection, J–T phenomenon, and heat transfer from overburden and under-burden formations, are incorporated in this study. The proposed model successfully validates the results of a rigorous numerical model that intrinsically honored field data.

Publisher URL: https://link.springer.com/article/10.1007/s13202-017-0397-0

DOI: 10.1007/s13202-017-0397-0

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.