3 years ago

Large Area Co-Assembly of Nanowires for Flexible Transparent Smart Windows

Large Area Co-Assembly of Nanowires for Flexible Transparent Smart Windows
Jian-Wei Liu, Shu-Hong Yu, Hui-Hui Li, Jin-Long Wang, Yi-Ruo Lu
Electrochromic devices with controllable color switching, low cost, and energy-saving advantages have been widely used as smart windows, rear-view car mirrors, displays, and so on. However, the devices are seriously limited for flexible electronics as they are traditionally fabricated on indium tin oxide (ITO) substrates which will lose their conductivity after bending cycles (the resistance significantly changed from 200 Ω to 6.56 MΩ when the bending radius was 1.2 cm). Herein, we report a new route for large area coassembly of nanowires (NWs), resulting in the formation of multilayer ordered nanowire (NW) networks with tunable conductivity (7–40 Ω/sq) and transmittance (58–86% at 550 nm) for fabrication of flexible transparent electrochromic devices, showing good stability of electrochromic switching behaviors. The electrochromic performance of the devices can be tuned and is strongly dependent on the structures of the Ag and W18O49 NW assemblies. Unlike the ITO-based electronics, the electrochromic films can be bent to a radius of 1.2 cm for more than 1000 bending cycles without obvious failure of both conductivity (ΔR/R ≈ 8.3%) and electrochromic performance (90% retention), indicating the excellent mechanical flexibility. The present method for large area coassembly of NWs can be extended to fabricate various NW-based flexible devices in the future.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03227

DOI: 10.1021/jacs.7b03227

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.