3 years ago

Mechanical behaviour of a hydrogel film with embedded voids under the tensile load

Somenath Ganguly, Subhajit Patra, Arindam Banerjee

Abstract

The behaviour of alginate gel film in response to the tensile load is analysed in this paper. The bubbles of 0.5 mm diameter were embedded in the film by the fluidic method prior to gelation, thus providing uniform voidage over the entire film. Further, the intrinsic porosity of the gel matrix around the voids was varied by removing water through either evaporation under vacuum, or employing lyophilisation. The Poisson’s ratio and the modulus of elasticity were estimated from direct measurements. The viscoelasticity of the gel matrix was characterized from stress-relaxation measurement. The transient response to tensile loading and the evolution of stress contours were studied through numerical simulation in ANSYS. The ultimate strength was studied for the gel films with embedded voids of different sizes. The numerical simulations were validated by experimental measurements.

Publisher URL: https://link.springer.com/article/10.1007/s10971-018-4776-x

DOI: 10.1007/s10971-018-4776-x

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.