3 years ago

Physicochemical and thermal characteristics of sugarcane straw and its cellulignin

Debora Danielle Virgínio da Silva, João Andrade de Carvalho, Maria das Graças Almeida Felipe, Vinícius Pereira da Silva, Eliana Vieira Canettieri, Andrés Felipe Hernández-Pérez, Turíbio Gomes Soares Neto, Kelly Johana Dussán


Combustion of biomass is considered to be a source of atmospheric pollution and, therefore, is one of the important sources of CO2 emission. This paper discusses the burning of sugarcane straw and its cellulignin in laboratory tests to determine the characteristics and emission factors, of this combustion process. Elemental, chemical composition and thermogravimetric analyses were performed for both samples. Carbon contents for sugarcane straw and its cellulignin were estimated, and the values found were 45.69% and 44.28%, respectively. Higher heating values (HHV) were determined by experimental methods with a calorimetric bomb and were estimated by theoretical equations. The best results were obtained when only the lignin’s content was considered. During the experimental tests to determine HHVs, cellulignin did not burn completely, while straw burned completely. This could be because cellulignin contains more ashes, resulting in more residual ash after burning. Pollutant emission of CO2, CO, NO and UHC was evaluated in the flaming and smoldering combustion phases. NO concentrations were not presented because they were less than 10 ppm. The average theoretical and experimental emission factors for CO2 were analyzed. CO2 emissions factors found for sugarcane straw and their cellulignin were 1316 ± 83.6 and 1275 ± 105 g kg−1 of dry burned biomass, respectively. The evaluated parameters are useful to incorporate these materials into a future biorefinery.

Publisher URL: https://link.springer.com/article/10.1007/s40430-018-1331-1

DOI: 10.1007/s40430-018-1331-1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.