5 years ago

Salt-tolerant and -sensitive alfalfa (<i>Medicago sativa</i>) cultivars have large variations in defense responses to the lepidopteran insect <i>Spodoptera litura</i> under normal and salt stress condition

Qing Tan, Honghui Lin, Yunting Lei, Qing Liu, Jianqiang Wu, Guoyan Cao, Weiye Zhao, Christian Hettenhausen

by Yunting Lei, Qing Liu, Christian Hettenhausen, Guoyan Cao, Qing Tan, Weiye Zhao, Honghui Lin, Jianqiang Wu

In nature, plants are often exposed to multiple stress factors at the same time. Yet, little is known about how plants modulate their physiology to counteract simultaneous abiotic and biotic stresses, such as soil salinity and insect herbivory. In this study, insect performance bioassays, phytohormone measurements, quantification of transcripts, and protein determination were employed to study the phenotypic variations of two alfalfa (Medicago sativa) cultivars in response to insect Spodoptera litura feeding under normal and salt stress condition. When being cultivated in normal soil, the salt-tolerant alfalfa cultivar Zhongmu-1 exhibited lower insect resistance than did the salt-sensitive cultivar Xinjiang Daye. Under salinity stress, the defense responses of Xinjiang Daye were repressed, whereas Zhongmu-1 did not show changes in resistance levels. It is likely that salinity influenced the resistance of Xinjiang Daye through suppressing the accumulation of jasmonic acid-isoleucine (JA-Ile), which is the bioactive hormone inducing herbivore defense responses, leading to attenuated trypsin proteinase inhibitor (TPI) activity. Furthermore, exogenous ABA supplementation suppressed the insect herbivory-induced JA/JA-Ile accumulation and levels of JAR1 (jasmonate resistant 1) and TPI, and further decreased the resistance of Xinjiang Daye, whereas Zhongmu-1 showed very little response to the increased ABA level. We propose a mechanism, in which high levels of abscisic acid induced by salt treatment may affect the expression levels of JAR1 and consequently decrease JA-Ile accumulation and thus partly suppress the defense of Xinjiang Daye against insects under salt stress. This study provides new insight into the mechanism by which alfalfa responds to concurrent abiotic and biotic stresses.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0181589

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.