3 years ago

Tunable Near-Infrared Organic Nanowire Nanolasers

Tunable Near-Infrared Organic Nanowire Nanolasers
Shuo Chen, Zhi-Zhou Li, Hongbing Fu, Xuedong Wang, Ming-Peng Zhuo, Yishi Wu, Jiannian Yao
Organic semiconductor nanowires have inherent advantages, such as amenability to low-cost, low-temperature processing, and inherent four-level energy systems, which will significantly contribute to the organic solid-state lasers (OSSLs) and miniaturized laser devices. However, the realization of near-infrared (NIR) organic nanowire lasers is always a big challenge due to the difficultly in fabrication of organic nanowires with diameters of ≈100 nm and material issues such as low photoluminescence quantum efficiency in the red-NIR region. What is more, the achievement of wavelength-tunable OSSLs has also encountered enormous challenge. This study first demonstrates the 720 nm NIR lasing with a low lasing threshold of ≈1.4 µJ cm−2 from the organic single-crystalline nanowires, which are self-assembled from small organic molecules of (E)-3-(4-(dimethylamino)-2-methoxyphenyl)-1-(1-hydroxynaphthalen-2-yl)prop-2-en-1-one through a facile solution-phase growth method. Notably, these individual nanowires' Fabry–Pérot cavity can alternatively provide the red-NIR lasing action at 660 or 720 nm from the 0–1 or 0–2 radiative transition channels, and the single (660 or 720 nm)/dual-wavelength (660 and 720 nm) laser action can be achieved by modulating the length of these organic nanowires due to the intrinsic self-absorption. These easily-fabricated organic nanowires are natural laser sources, which offer considerable promise for coherent light devices integrated on the optics microchip. Near-infrared (NIR) lasing is achieved from self-assembled, single organic nanowires with a rectangular cross-section with a width of ≈120 nm. Notably, the individual organic nanowire Fabry–Perot (FP) cavity can alternatively provide the red-NIR lasing action at 660 or 720 nm, which arises from the 0–1 or 0–2 radiative transition channels.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201703470

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.