4 years ago

Atomistic Simulations of the Crystallization and Aging of GeTe Nanowires

Atomistic Simulations of the Crystallization and Aging of GeTe Nanowires
J. Behler, M. Bernasconi, E. Baldi, E. Bosoni, G. C. Sosso, S. Caravati, D. Campi, S. Gabardi
Nanowires made of chalcogenide alloys are of interest for use in phase-change nonvolatile memories. For this application, insights into the thermal properties of such nanowires and, in particular, into the crystallization kinetics at the atomic level are crucial. Toward this end, we have performed large-scale atomistic simulations of ultrathin nanowires (9 nm in diameter) of the prototypical phase-change compound GeTe. We made use of an interatomic potential generated by the neural network fitting of a large ab initio database to compute the thermal properties of the nanowires. By melting a portion of a nanowire, we investigated the velocity of recrystallization as a function of temperature. The simulations show that the melting temperature of the nanowire is about 100 K below the melting temperature of the bulk, which yields a reduction by about a factor of 2 of the maximum crystallization speed. Further, analysis of the structural properties of the amorphous phase of the nanowire suggests a possible origin of the reduction of the resistance drift observed experimentally in nanowires with respect to the bulk.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b09862

DOI: 10.1021/acs.jpcc.7b09862

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.