4 years ago

Efficient Solar Cells Based on Light-Harvesting Antimony Sulfoiodide

Efficient Solar Cells Based on Light-Harvesting Antimony Sulfoiodide
Byung-wook Park, Riming Nie, Aarti Mehta, Hyun-sung Yun, Yong Chan Choi, Sang Il Seok, Min-Jae Paik
Although antimony sulfoiodide (SbSI) exhibits very interesting properties including high photoconductivity, ferroelectricity, and piezoelectricity, it is not applied to solar cells. Meanwhile, SbSI is predominantly prepared as a powder using a high-temperature, high-pressure system. Herein, the fabrication of solar cells utilizing SbSI as light harvesters is reported for the first time to the best of knowledge. SbSI is prepared by solution processing, followed by annealing under mild temperature conditions by a reaction between antimony trisulfide, which is deposited by chemical bath deposition on a mesoporous TiO2 electrode and antimony triiodide, under air at a low temperature (90 °C) without any external pressure. The solar cells fabricated using SbSI exhibit a power conversion efficiency of 3.05% under standard illumination conditions of 100 mW cm−2. Solar cells with the configuration of FTO (fluorine-doped SnO2)/TiO2 blocking layer/mesoporous TiO2/SbSI/hole-transporting material/Au are demonstrated for the first time. The cells fabricated using TiO2 as an electron-transporting layer and poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] as a hole-transporting layer exhibit a power conversion efficiency of 3.05% under full illumination of air mass 1.5G.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/aenm.201701901

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.