4 years ago

p-Type CuI Islands on TiO2 Electron Transport Layer for a Highly Efficient Planar-Perovskite Solar Cell with Negligible Hysteresis

p-Type CuI Islands on TiO2 Electron Transport Layer for a Highly Efficient Planar-Perovskite Solar Cell with Negligible Hysteresis
Seulki Song, Taewan Kim, Mahdi Malekshahi Byranvand, Gyeongho Kang, Taiho Park, Seung Un Ryu
Compact TiO2 is widely used as an electron transport material in planar-perovskite solar cells. However, TiO2-based planar-perovskite solar cells exhibit low efficiencies due to intrinsic problems such as the unsuitable conduction band energy and low electron extraction ability of TiO2. Herein, the planar TiO2 electron transport layer (ETL) of perovskite solar cells is modified with ionic salt CuI via a simple one-step spin-coating process. The p-type nature of the CuI islands on the TiO2 surface leads to modification of the TiO2 band alignment, resulting in barrier-free contacts and increased open-circuit voltage. It is found that the polarity of the CuI-modified TiO2 surface can pull electrons to the interface between the perovskite and the TiO2, which improves electron extraction and reduces nonradiative recombination. The CuI solution concentration is varied to control the electron extraction of the modified TiO2 ETL, and the optimized device shows a high efficiency of 19.0%. In addition, the optimized device shows negligible hysteresis, which is believed to be due to the removal of trap sites and effective electron extraction by CuI-modified TiO2. These results demonstrate the hitherto unknown effect of p-type ionic salts on electron transport material. It is revealed that the CuI islands on the TiO2 electron transport layer can induce change of polarity increasing electron extraction, establish barrier-free band alignment with perovskite, and reduce the trap sites. These changes of interface properties induce power conversion efficiency of 19.0% perovskite solar cell with negligible hysteresis.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/aenm.201702235

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.