3 years ago

Probing the activity of pure and N-doped fullerenes towards oxygen reduction reaction by density functional theory

Probing the activity of pure and N-doped fullerenes towards oxygen reduction reaction by density functional theory
Fullerene can be potentially used as the electrocatalyst for oxygen reduction reaction (ORR) due to its curvature and pentagon defect. In this study, the ORR mechanisms and catalytic abilities of pure and N-doped fullerenes were investigated via DFT computations. Four different sized fullerenes, C20, C40, C60, and C180, with respectively the diameter of approximately 0.4, 0.6, 0.7, and 1.2 nm, were utilized to investigate the size effect on the ORR performance. The results reveal that the smallest (C20 and N-doped one) and the largest (C180 and C179N) fullerenes are not effective ORR catalysts candidates in view of their unsuitable adsorption strength to the ORR species. In contrast, N-doped C40 and C60, with the adsorption energy much close to those on Pt(111), manifest high ORR activity potentials. Further analysis of the relative energy diagram shows that the ORR process on C19N and C179N is completed through a H2OO dissociation mechanism, while on C39N and C59N it will undergo an OOH dissociation pathway. In addition, the C39N has the largest decreased energy of rate-determining step in the relative energy profile, suggesting its ORR activity is the best among all the different sizes of fullerenes that we studied.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317309983

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.