4 years ago

Incorporating transition metals (Ta/Co) into nitrogen-doped carbon as counter electrode catalysts for dye-sensitized solar cells

Incorporating transition metals (Ta/Co) into nitrogen-doped carbon as counter electrode catalysts for dye-sensitized solar cells
Carbon materials are potential electrode materials in new energy devices such as solar cells, fuel cells, Li-ion batteries, and supercapacitors, because of their distinct advantages including low cost, high surface area, and high electric conductivity. Nitrogen doping can effectively improve the performance of carbon electrode materials, and introducing transition metals into nitrogen-doped carbon is a promising strategy to develop high-performance electrode materials. In the present work, we successfully prepared two kinds of metal-incorporated nitrogen-doped carbon materials (CoNC and Ta/CoNC) by pyrolyzing a cobalt (II) imidazolate polymer followed by ion exchange. The as-prepared Ta/CoNC materials present a better graphite crystal phase and higher Brunauer-Emmett-Teller (BET) specific surface area (421.5 m2/g) than that of CoNC (354.7 m2/g). As counter electrode (CE) materials in I-mediated dye-sensitized solar cells (DSSCs), Ta/CoNC exhibits a superior catalytic activity and electrochemical stability than CoNC, resulting in a high power conversion efficiency (PCE) of 7.96%, which outperforms the level achieved using a Pt electrode (7.19%) in DSSCs. These Ta- and Co-incorporated nitrogen-doped carbon materials are expected to be used in extensive new energy applications, such as biomass, pollution control and hydrogen generation.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317310011

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.