4 years ago

Macroscopically interconnected hierarchically porous carbon monolith by metal-phenolic coordination as an sorbent for multi-scale molecules

Macroscopically interconnected hierarchically porous carbon monolith by metal-phenolic coordination as an sorbent for multi-scale molecules
This study reports on a simple and efficient strategy to prepare macroscopically assembled nanostructured porous carbon (MNPC) based on metal-phenolic interactions. The abundant coordination sites contained in tannic acid enable to form a stable, interconnected hydrogel dough. The porosity evolution mechanism during carbonization process is studied by temperature programmed desorption-mass spectroscopy. Hierarchical pore structure of the MNPC can be developed by modulating the zinc chloride content. The resulting material provides versatile adsorption behaviors for various ranging from small gas molecules to larger molecules such as dye, oil and organic solvents.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317309892

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.