4 years ago

Enhanced thermal and mechanical properties of polyvinlydene fluoride composites with magnetic oriented carbon nanotube

Enhanced thermal and mechanical properties of polyvinlydene fluoride composites with magnetic oriented carbon nanotube
Carbon nanotube (CNT) is an attractive material to many scientists worldwide due to its outstanding thermal and mechanical properties. In this paper, magnetic carbon nanotube (mCNT) with excellent magnetic response was successfully synthesized by coating iron oxide particles. In order to improve the thermal conductivity and mechanical strength of polyvinylidene fluoride (PVDF) composite, mCNT was supplemented and aligned under the external magnetic field during the composite fabrication. Subsequently, orientation effects of mCNT, including the in-plane, through-plane and random patterns, on the overall thermal performance of mCNT-PVDF composite were evaluated by the X-ray diffraction, scanning electron microscope, transmission electron microscope and thermal conductivity meter, and further simulated by Effective Medium Approximation model. The results indicate that the thermal conductivity of mCNT-PVDF composites is related to the anisotropy and the thermal resistance of mCNT, and could be improved by controlling the orientation of the mCNT. The thermal conductivity of vertically-aligned mCNT-PVDF composite is 62% higher than that of unaligned one. In addition, the aligned mCNT-PVDF composite exhibits excellent mechanical strength and heat exchange ability, which makes it a potential material for use in the heat exchange industry.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317310217

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.